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Abstract

A review of the theoretical approaches for the representation of the solvent effect on molecular structure and
reactivity is presented. The main characteristics of the different methods available for the description of solvation
phenomena are outlined. The advantages and shortcomings of the computational approaches are discussed.
Comparison of the different methodologies might help a non-expert user select the most suitable method for the
treatment of a particular system in solution.
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Introduction

The complexity of chemical phenomena makes it necessary
to use molecular models. A given model must incorporate all
the relevant features of the process of interest, so that the
results can be interpreted and contrasted with experimental
evidence. Choice of the model is made by defining three ba-
sic elements: the material constituents or "building-blocks"
of the system, the physical rules underlying the chemical
process, and the mathematical formalism required to describe
such a process according to the physics of the problem. The
results provided by the model can be rationalized on the
grounds of these elements. Comparison with experiment will
show the weaknesses of the model, which must then be re-
vised and improved. The final objective is the development
of a theoretical model able to explain the chemical behav-
iour.

The evolution of theoretical chemistry clearly illustrates
this scientific method. Thus, in the early eighties neither
theory nor computational resources allowed the study of
chemical processes in condensed phases. Reduced systems,
in which the solvent was ignored, were used, while large
improvements were made in the study of processes in the gas
phase. Since then, we have witnessed the impressive increase
in computer power, the optimization of computational algo-
rithms available in standard computer programs, and the im-
provement in the accuracy of quantum chemical techniques.
As a result, a very precise quantum mechanical (QM) de-
scription of chemical systems in the gas phase can now be
achieved. On the other hand, this evolution has been accom-
panied by the development of sophisticated methods for the
representation of solvent, which has provided the theoretical
framework and the technical resources required to initiate
the study of chemical processes in condensed phases.
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In this paper the most recent methods for the study of
solvation are reviewed. First, the nature of the solvent effect
and the changes induced in the structure of the solute and in
the thermodynamic and kinetic characteristics of chemical
interactions are discussed. Second, the classical methods for
the description of solvent effects are presented. Finally, the
treatment of systems in solution by QM methods are exam-
ined. The strengths and weaknesses of the different methods
and their range of applicability are discussed.

The nature of the solvent effect

From a rigorous theoretical point of view the concepts of
solute and solvent are meaningless, since a dilute solution is
an ensemble of molecules which should be treated at the same
level, irrespective of their nature and population. The differ-
entiation between solute and solvent obeys to practical con-
siderations, because of the difficulty of treating correctly the
bulk solution due to: i) the large number of solvent molecules
needed to simulate a dilute solution, and ii) the high level of
accuracy often required to describe the solute. In this con-
text, the "solvent effect" can be interpreted as the change
experienced by a chemical system (the solute) upon transfer
from the gas phase to a dilute solution.

There are different ways in which the solute is influenced
by solvation. In the following the solvent effect is examined
according to the nature of the changes induced in the solute,

which may affect i) the molecular (nuclear and electronic)
structure and ii) the thermodynamics and kinetics of chemi-
cal processes. The nature of these effects is quite different
and, consequently, the theoretical method chosen to study a
given process must be able to capture properly the nature of
the factors involved in these effects.

Changes in molecular structure

The solvent can introduce notable changes in the molecular
structure, both in terms of nuclear and electronic distribu-
tions. Thus, changes in the nuclear configuration may arise
from the tendency of polar solvents to stabilize structures
with large charge separation (see below). The net effect can
be a change in the conformational space of the solute, so that
the relative population of the conformers having the largest
polarity is increased. An example is the destabilization of
the conformations with intramolecular hydrogen-bonds in
polar solvents (Figure 1). Another illustrative case is the
change in the equilibrium between isomers, as shown by the
isomerization of formic acid (Figure 2). Nuclear changes in-
volving the formation or breaking of covalent bonds are also
largely dependent on the solvent. There are numerous exam-
ples reported in the literature about changes in the preferred
species for tautomeric processes [1]. In general, a polar sol-
vent displaces the tautomeric equilibrium so as to increase
the population of the most polar tautomer. This effect can
revert the stability in gas phase, even for apolar solvents [2].
In all these cases the solvent effect is mainly modulated by
classical electrostatic interactions.

The influence of the solvent on the electronic distribu-
tion (for a given nuclear configuration) modulates the chemi-
cal reactivity. This is reflected in the change of different prop-
erties upon solvation, such as the enlargement in the dipole
moment for neutral polar molecules [3], the change in the
molecular electrostatic potential, the variation in the molecu-
lar volume [4], or the displacement in the spectroscopic prop-
erties [5]. The magnitude of the polarizing effect is surpris-
ingly large, as noted by increases of 20-30% in dipole mo-
ments for neutral solutes in aqueous solution [3]. Further-
more, even in apolar solvents like chloroform the solvent
polarization is not negligible, as indicated by increases of 8-
10% in the dipole moments determined for neutral molecules
from theoretical calculations (see below). In most cases the
solvent effect is exerted through the electrostatic perturba-
tion of the solute, but in some cases dispersion interactions
are known to play a major effect [5].

Changes in thermodynamics and kinetics of chemical in-
teractions

The best known effect of solvent is the modulation of chemi-
cal reactivity, even in the most apolar solvents [6].This ef-
fect is especially relevant for polar solvents like water, where

Figure 1. Conformational equilibrium of HCOCH
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Figure 2. Changes in the heat of
formation in gas phase and the free
energy of hydration upon rotation
of the C-O bond of formic acid.
Values of ∆H(f) and ∆G(sol) were
determined at the AM1 and AM1/
MST levels, respectively.

it can invert the sign of the free energy change for a chemical
reaction in the gas phase. The solvent has three major effects
on the chemical reactivity: i) the modulation of the intrinsic
reactive characteristics of reactants; ii) the introduction of
viscosity effects; and iii) the direct interaction of solvent
molecules with reactants, products, and transition states,
which may lead to a differential stabilization of these spe-
cies.

The change in the intrinsic reactive properties is mainly
related to the polarization of the solute charge distribution
(see above). The inclusion of viscosity effects is expected to
modulate greatly the dynamics of the molecular system. This
effect is not dramatic for a small and mobile solvent, or for
processes with high intrinsic (gas phase) energy barriers, but
it can be relevant when the solvent molecules are large and
low mobile, or when the energy barrier is small. Indeed, vis-
cosity effects are also involved in processes controlled by
diffusion.

The interaction of solvent molecules with reactants, prod-
ucts and transition states may greatly influence the chemical
reaction. This effect is especially important for polar sol-
vents like water, where specific interactions, i.e. hydrogen
bonds, can be established with the reactive species leading
to changes in their relative stabilities. All chemical interac-
tions are susceptible to the solvent effect, but the largest in-
fluence may be expected to occur i) when the polarities of
reactants, transition state or products are very different, and
ii) when the number of specific solute-solvent interactions

(the number of hydrogen-bond donor and acceptors) changes
during the interaction. There are a large number of processes
that illustrate this effect Some well-known examples are dis-
cussed in this review, but more detailed explanations can be
found elsewhere [see, for instance, ref. 7].

Ion-ion interactions are particularly influenced by the
solvent. The shielding of electrostatic interactions in polar
solvents can stabilize two species equally charged (with the
same sign) and separated by a finite distance, but this situa-
tion would obviously be unstable in gas phase [8]. Close
anion-cation interactions are extremely stable in the gas phase,
but the configurations corresponding to a solvent-separated
ion pair are favored in polar solvents [8]. This difference ul-
timately stems from the preferential stabilization of the iso-
lated (or solvent-separated) ions by the solvent. An additional
example is the ionization of acids and bases. A simple calcu-
lation (Figure 3) based on the experimental proton affinities
of water and the hydroxyl anion [9] suggests that the free
energy of ionization of water in gas phase at 298 K is around
218 kcal/mol. In contrast, the free energy in aqueous solu-
tion, as determined from the experimental pKa, is around 24
kcal/mol, and that determined from the thermodynamic cy-
cle in Figure 3 using experimental free energies of hydration
[10] is around 21 kcal/mol.

The effect of polar solvents on ion-molecule interactions
has also been the subject of a large number of experimental
and theoretical studies [7c,11]. A classical process is the SN2

reaction, in which water molecules induce large changes in



4 J. Mol. Model. 1996, 2

A (gas phase)

A (solution)
∆G2

∆Gsolv

∆Gsolv = ∆G1  +  ∆Gnill  – ∆G2  =  ∆G1  –  ∆G2

Nill (solution)

Nill (gas phase)
∆G1

∆Gnill

Table 1. Differences in free energy of hydration (∆∆G
hyd

)
related to hydrogen-bond formation in aqueous solution.
Geometries for hydrogen-bond structures were determined
at the AM1 level in the gas phase. Values of ∆G

hyd
 were com-

puted using the standard AM1-MST method. Errors in hydro-
gen-bond geometries are not expected to introduce dramatic
changes in the evaluation of ∆∆G

hyd
. All the values are in

kcal/mol. ∆∆G
hyd

 is defined as ∆G
hyd
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hyd

(unbound).
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Figure 3. Thermodynamic cycle for the ionization of water
in gas phase and in aqueous solution (see text for details).

the kinetic and thermodynamic characteristics. A remarkable
example is the nucleophilic attack of a hydroxyl group to a
carbonyl center. This reaction is very exothermic and occurs
without activation barrier in the gas phase (for instance,see
ref. 11e,i and references therein), but it is clearly endothermic
in aqueous solution, and the activation barrier is largely due
to the preferential solvation of reactants with respect to tran-
sition state and products [11e]. Similar considerations apply

Figure 4. Thermodynamic cycle used to compute the free
energy of solvation.

for the attack of other nucleophilic agents to carbonyl centers
[see, for instance, ref. 11g,h].

In addition to ion-ion and ion-molecule interactions, other
chemical reactions are highly susceptible to the solvent. In
particular, attention has been paid to the solvent effect on
Claisen rearrangements [7b,12], Diels-Alder reactions [13],
benzoin condensation [14], reduction reactions [15],
racemization [16] and aldolic condensations [17], among oth-
ers [for details of solvent effects on chemical reactions, see
ref. 7]. In all cases the solvent plays an important role in the
thermodynamics and kinetics of each reaction.

Finally, non-bonded interactions, specially hydrogen-
bonds, are significantly affected by polar solvents. Thus, the
formation of hydrogen-bonded structures in aqueous solu-
tion is largely disfavored due to efficient competition of wa-
ter molecules for the hydrogen-bond donor and acceptor
groups. A prototypical example is the hydrogen-bond asso-
ciation of nucleic acid bases, which is exothermic in the gas
phase, while the weak stacking interaction is preferred in
aqueous solution [18]. The reason for this behavior stems
from the differences in the free energy of hydration of the
hydrogen-bonded complexes of nucleic bases with respect to
the free bases.

A more general picture of the influence of polar solvent
on hydrogen-bond interactions can be obtained from inspec-
tion of Table 1, where the solvent effect on the formation of
several hydrogen-bond complexes was determined using theo-
retical methods (see below). The results show the large dis-
turbing effect of water, as noted by the positive values of the
differences in free energy of hydration for the formation of
the hydrogen-bond complex, which can revert the sign of the
free energy of association in the gas phase. The implications
of these results on molecular recognition in aqueous solu-
tion, specially in biological systems, cannot be underesti-
mated.
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Theoretical calculation of solvent effects

As noted before, the solvent may influence the nuclear and
electronic distributions of the solute, as well as the chemical
reactivity and intermolecular interactions. In the last 20 years
different methods have been developed to gain insight into
these effects. All these methods can broadly be grouped into
two main categories depending on the treatment of the sol-
ute: i) classical methods and ii) QM methods. In both cases,
the solvent is described classically, either in terms of dis-
crete particles (the microscopic level) or as a continuum
medium (the macroscopic level).

The former methods treat the solute as a classical parti-
cle, whose interactions are determined by classical force-
fields, which difficults a correct representation of the sol-
vent-induced changes on solute properties. The QM meth-
ods account for solvent polarization, and accordingly for
changes in structure and reactivity upon solvation. Unfortu-
nately, they are computationally very expensive and this im-
pedes their application to large systems. The (classical or
QM) methods based on a microscopic description of the sol-
vent determine the average representation of the system in
solution from the ensemble of configurations collected from
Monte Carlo (MC) or Molecular Dynamics (MD) simulations.
Quite accurate estimates of the change in the free energy of
reaction in solution when MD or MC simulations are cou-
pled to statistical mechanical algorithms [19]. The expen-
siveness of these simulations is, nevertheless, a critical fac-
tor for large systems, or when the solute is represented quan-
tum mechanically. In this context, the treatment of the sol-
vent as a continuum medium is advantageous, since the de-
grees of freedom of the solvent are not longer considered.

Treating the solvent as a continuum medium, however, im-
plies the lack of a detailed description of solute-solvent in-
teractions. Nevertheless, precise results can be obtained
through a well-balanced selection of the properties that char-
acterize the solvent continuum model.

Classical methods

The classical methods determine the free energy of solvation
(the reversible work needed to transfer a molecule from gas
phase to solution) as the difference between the works re-
quired to annihilate the molecule in gas phase and in dilute
solution (Figure 4). If the work involved in the annihilation
of intramolecular interactions is the same in gas phase and in
solution, i.e. the molecule has a similar electronic and nu-
clear configuration in the two phases, the thermodynamic
cycle in Figure 4 can be simplified, and the free energy of
solvation can be determined from the work required to anni-
hilate the intermolecular interactions of the solute in solu-
tion. The annihilation is usually performed in two steps (elec-
trostatic decoupling), where the steric interactions are anni-
hilated after removing the electrostatic interactions .

The calculation of electrostatic and steric contributions
to the free energy of solvation can be performed considering
the solvent as a finite set of discrete particles (discrete meth-
ods) or as a continuum which reacts against the solute (con-
tinuum methods).

Classical discrete methods

The microscopic description of solute and solvent is encoded
in the force-field [19,20], which has different energy terms
for bonded (stretching, bending, torsion) and non-bonded
(electrostatic, van der Waals) interactions. These terms adopt

Properties Monte Carlo Molecular Dynamics

Control of T, P Easy Difficult
(weak coupling methods)

Conf. variables Internals Cartesians

Reduction of configurational space Easy Difficult
(holonomic constrains)

Sampling for small solutes Easy Easy

Sampling for large solutes Very difficult Average difficulty

Study of time-dependent processes Very difficult Average difficulty

Setup of the simulation system Average difficulty Easy

Table 2 Comparative characteristics of Monte Carlo and
Molecular Dynamics for the study of solvated systems.
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very simple expressions, which facilitates the evaluation of
the potential energy of the system. The averaged representa-
tion of the solute-solvent system is obtained from MD and
MC techniques [21].

The sampling of the solute-solvent configurational space
by MD is performed from the  trajectories determined by
integration of the equations of motion, which can be per-
formed following Newton, Lagrange or Hamilton formalisms
(for review, see ref. 21). MC samplings are obtained from
the application of Boltzmann probabilistic rules to a very
large set of randomly selected configurations. In principle,
MD and MC samplings should be identical for infinite
simulations if the system is in equilibrium. However, the use
of MD and MC techniques present several differences for
their application to computational simulations, a concise sum-
mary of them being given in Table 2.

In general, MD and MC have a similar efficiency in the
sampling of the configurational space for small solutes. MD
techniques offer the advantage that the time evolution of the
system may be analyzed, which is often interesting to study
time-correlation functions or transport properties. On the other
hand, MC calculations allow complete control of the simula-
tion system and an easy reduction of configurational vari-
ables, although caution must be taken to avoid an artefactual
simplification of the configurational space. When the solute
is large and flexible, MD techniques are prefered, since in
these cases the sampling in internal coordinates used in stand-
ard MC simulations is inefficient. Strategies to increase the
reliability of MC techniques in the sampling of
conformational movements in large solutes have been dis-
cussed elsewhere [21f]. Both MD and MC techniques pro-
vide Boltzmann-averaged samplings, which can be used to
determine the free energy of solvation. This can be done fol-
lowing two different strategies based on: i) linear free energy
response (LFER) theory, or ii) statistical mechanical (SM)
methods.

According to LFER (for details see ref. 22), the electro-
static component of the free energy of solvation is half the
magnitude of the averaged solute-solvent electrostatic inter-
action energy  (E

sx
 in eq.1). The steric components can be

computed upon a proper scaling of the solute-solvent van
der Waals interaction (E

vw
 in eq. 2) or by using parametric

equations expressed in terms of the molecular volume, the
solvent accessible surface or similar descriptors (ζ in eq. 2).
In eq. 2 the brackets mean that the averages are done for
Boltzmann samplings, and the scaling parameters (α, β) are
adjustable variables fitted to reproduce dispersion-repulsion
and cavitation contributions to the free energy of solvation.
Parametrized LFER-based discrete methods provide good
estimates of free energy of hydration, and its application in
molecular modeling studies is promising [23].

∆G Eele sx= 1
2 (1)

∆G Ester vw= +α β ζ (2)

Some of the most powerful techniques available for the
study of systems in solution have emerged from the coupling
of SM theory with MD and MC simulations. Among them,
free energy perturbation (FEP) and thermodynamic integra-
tion (TI) are of special interest for the calculation of the free
energy of solvation [24]. It is not our purpose to explain in
detail these methods, but just to present briefly their essen-
tial characteristics. For a detailed explanation on these and
related techniques, we address the reader to the original works
in ref. 24, and to other recent reviews [19].

FEP and TI techniques compute the free energy of
solvation using the thermodynamic cycle in Figure 4. The
free energy of solvation is determined as the difference in
the works involved in the annihilation of the solute in gas
phase and in solution (∆G1 and ∆G2 in Figure 4) through a
reversible pathway. The requisite of reversibility for the
A(solute)->B(dummy) interconversion implies that such a
mutation has to be divided into smaller steps: A->A'->A''-
>...->B''->B'->B, in such a way that the change in every step
is small enough as to make every (micro)process reversible.
In practical simulations this is achieved through the use of a
"coupling" parameter (λ), which controls the change between
the Hamiltonians for the two states, A and B (eq. 3; λ=0:
state A, λ=1: state B).

( )H H HA Bλ λ λ= − +1 (3)

The use of the coupling parameter within the FEP frame-
work allows the calculation of the free energy of solvation
according to eq. 4. The equivalent expression obtained from
TI theory is shown in eq. 5. The Boltzmann averages are
obtained from MD or MC samplings, and ∆λ defines the
number of steps (windows) involved in the annihilation proc-
ess (λ:0->1).

( )∆ ∆λ
∆λ

G RT
E E

RTsolv = − −







+

=

−

∑ ln exp λ λ

λ λ0

1

(4)

∆
∆λ∆λ

G
E

dsolv = −












+

=

−

∫∑ ∂
∂λ

λλ

λλ

λ

λ

'

''
'

0

1

(5)

Other related algorithms have been suggested. Among
them, slow growth (SG, [25]), where a very small window
(∆λ=dλ) is sampled only with a single configuration, the
muticonfigurational thermodynamic integration (MCTI, [26]),
which is based on a discontinous integration of (∂E/∂λ), and
the finite difference thermodynamic integration (FDTI, [27]),
which has shown an excellent performance in different stud-
ies of complex solutes [1f,27]. This latter algorithm, which
combines TI and FEP methods, computes the free energy of
solvation according to the expression given by eq. 6.
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( )∆G RT
E E

RTsolv = − − − −























+

=

=

∫ ∂
∂λ

λ δλ λ

λλ

λ

ln exp

0

1

(6)

The SM methods have been successfully used in the study
of solvation in different solvents, as well as in the calcula-
tion of transfer free energies between immiscible solvents
[28]. A couple of recent studies have shown that the method
can provide, without any specific ad hoc parametrization,
free energies of solvation with an average error of 1 kcal/mol
from experimental data for neutral polar solutes [29]. How-
ever, it should be noted that the goodness of the results is
guaranteed only when: i) a reliable force-field is used, ii)
polarization effects are not very important, and iii) MD or
MC simulations are large enough to provide representative
Boltzmann samplings at every step of the simulation.

Classical continuum methods

These methods treat the solvent as a continuum medium
which reacts against the (unperturbed) solute charge distri-
bution. Calculation of the electrostatic free energy of solvation
can be done following the theory of polarizable solvents [22a]
at different degrees of complexity. Extension of the method
to incorporate other components of the free energy of
solvation (dispersion-repulsion and cavitation) is not diffi-
cult.

The classical continuum models can be classified accord-
ing to two main characteristics: i) the shape of the cavity that
defines the solute/solvent interface, and ii) the description of
the solute charge distribution and the solvent reaction field.
With regard to the solute/solvent interface, a large number of
cavities have been used. The simplest methods define cavi-
ties of regular shape, such as spheres, ellipsoids or cylinders,
while the most accurate methods use cavities adapted to the
actual molecular shape. Regarding the treatment of the sol-
ute charge distribution and the solvent reaction field, Tomasi
and Persico in their recent and exhaustive review [30] cat-
egorized the different treatments in five formalisms: i)
multipole expansions, ii) apparent surface charge, iii) image
charge, iv) finite difference, and v) finite elements. It is not
our purpose to review all the methods, but just to comment
on the most popular ones. The reader is referred to ref. 30
and 31 for a more complete discussion.

Methods based on multipole expansions are probably the
simplest ones. They typically use a regular cavity and the
multipole expansion is truncated at different levels: monopole
(Born model, eq. 7 [32]), dipole (Bell and Onsager , eqs. 8-9
[33]) or higher order terms [27]. In eqs. 7-9, ε is the dielec-
tric contrant, q and µ are the charge and dipole moment, R is
the radius of the cavity and α is the solute polarizability.

∆G
q
Rele = − − 











ε
ε
1

2

2

(7)

∆G
R

ele = − −
+













ε
ε

µ1
2 1

2

3 (8)

∆G
R R

ele = − −
+

− −
+



















−ε
ε

µ ε
ε

α1

2 1
1

1

2 1

22

3 3

1

(9)

Born and Bell-Onsager models have been very popular
because of their simplicity, even though the quantitative qual-
ity of the results may not very good when complex molecules
are dealt with. These two expressions have been recently
applied to account for long range interactions in MD and
MC simulations, where cutoff techniques are used to evalu-
ate non-bonded interactions [19-21].

More elaborated methods have been developed based on
multipole expansions. Among them, the Generalized Born
Model (GBM; eq.10) [34] treats the solute as a set of
monopoles (centered at nuclei), each independently solvated.
Empirical corrections are introduced to correct the overesti-
mation of the free energy of solvation, which arises from the
direct incremental application of the Born formalism (eqs.
11-13). GBM and other methods based on multipole expan-
sion are available in the QM framework (see below).

( )∆G
q q

ele
i j

GBi j

= − − ∑1
2

11 ε f
,

(10)

( )f
.

GB ij ij
Dr e= + −α2 0 5

(11)

( )α α αij i j=
0 5.

(12)

( )
D

rij

ij

=
2

2
2α (13)

r
ij
: distance between two atoms (center of charges)

α
i
: Born radii of atom -i.

Methods based on the apparent surface charge are also
widely used and different QM formalisms are available (see
below). In these methods the reaction field is represented in
terms of an imaginary surface charge spread over the cavity,
and the electrostatic free energy of solvation can be repre-
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sented with expressions analogous to eq. 14 [35], where σ is
the apparent surface charge distribution, ρ is the solute charge
distribution., Φρ is the solute electrostatic potential on the
cavity surface, and Φσ is the solvent reaction potential. At
the classical level the polarization of the solute charge distri-
bution by the solvent is typically ignored, i.e. ρ = ρ(o).

∆ ΦG dS drele
s

= = ∫∫1
2

1
2

σΦ ρρ σ (14)

The above expression, which arises from the application
of Poisson and Laplace equations with the appropriate bound-
ary conditions at the cavity surface, can be used to obtain
fast estimates of the electrostatic free energy of solvation, as
suggested in the eighties by Tomasi and coworkers [35]. Re-
cent studies have confirmed the goodness of this strategy [36]
for the calculation of free energies of solvation in a large
series of prototypical solutes. In addition, new strategies have
been suggested that, upon a detailed expansion of eq. 14, can
capture at least partially the mutual solute<->solvent polari-
zation effects  [36b].

Finite difference methods (FDM) are very popular for the
study of the free energy of solvation of large systems [37].
The electrostatic component is determined according to
eq. 15. Here the internal electrostatic potential (Φ

i
intra) is de-

termined from the unperturbed solute charge distribution,
while the total electrostatic potential (Φ

i
tot) is determined by

solving the Poisson equation, where the dielectric constant
is considered to be a function of the distance (eq. 16; Φ is the
total potential).

( )∆ Φ ΦG qele i i
tot

i= −∑1
2

intra

i
(15)

( ) ( )[ ] ( ) ( )( )∇ ∇Φ = − +ε π ρ ρr r r rext4 int (16)

The solution of the Poisson equation can be found at a
linear or nonlinear level, depending on the complexity of the
relationship between the external charge distribution (ρ

ext
)

and the electrostatic potential (Φ). In any case, the analytical
solution is not feasible, it being necessary to use finite differ-
ence methods. This is accomplished by using finite grids to
map the entire space, including solute and solvent. The elec-
trostatic potential at each point is then determined as a func-
tion of the potentials at the nearest grid points. The process
is repeated until convergence.

FDM provides good estimates of the free energy of
solvation for small molecules [38] provided that the grid of
points is dense enough. Otherwise, rather inaccurate results
are obtained. Alternative strategies have been devised to al-
leviate this problem, such as the focusing procedure [39].
Furthermore, some of the FDM algorithms, like DelPhi [37c],
have been extensively applied to the study of solvation in
macromolecules. When large systems are considered, cau-

tion is needed due to the large magnitude of the solvation
free energy, the difficulties in defining a priori the dielectric
constant inside the macromolecule, and the use of a rigid set
of charges for the solute charge distribution.

The most advanced classical continuum theories have
widespread application in the study of biochemical systems,
where efficient algorithms are necessary. They are also be-
coming very useful when coupled to MD and MC simulations,
where they are used to simulate the environment effect be-
yond the cutoff used for the non-bonded interactions. How-
ever, the shortcomings of these methods have to be properly
considered. In most cases non-electrostatic contributions to
the free energy of solvation are neglected, and a detailed treat-
ment of the solvent-induced polarization of the solute is dif-
ficult. Indeed, the description of the solute charge distribu-
tion and the definition of the cavity may not be accurate
enough. Finally, specific solute-solvent interactions are not
dealt with.

Quantum mechanical methods

The treatment of the solute-solvent system at the QM level is
impossible with the current computational resources. The cost
of this approach limits the description of the solvent to a few
molecules within the supermolecule approach, mainly to
analyze specific interactions with the solute. Thus, the gen-
eral approach is to treat the solute at the QM level, while the
solvent is represented classically using discrete or continuum
representations. In the discrete models the free energy of
solvation is computed from the work needed to annihilate
the coupling interactions between the solute and the solvent
Hamiltonian (see below). In the continuum models the free
energy of solvation is determined as the work necessary to
build up the solute in the solvent minus the work necessary
to perturb nuclear and electron distributions upon transfer
from gas phase to solution. It is worth noting that in both
strategies the solvent-induced polarization of the solute is
explicitly introduced.

Quantum discrete methods

These methods use a classical force field to represent the
solvent interactions [40]. The total Hamiltonian of the sol-
ute-solvent system is decomposed into three terms (eq. 17):
i) a QM Hamiltonian for the intramolecular solute interac-
tions (QM); ii) a classical Hamiltonian for the solvent-sol-
vent (intra and intermolecular) interactions (MM); and iii) a
coupling term to account for the solute-solvent interactions
(QM/MM).

$ $ $ $
/H H H Hef MM QM QM MM= + + (17)
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Owing to the expense of QM calculations, most algo-
rithms use semiempirical Hamiltonians for the solute [40,41],
but recently methods based on density functional theory, and
also at the ab initio level with small basis sets have been
developed [42]. Furthermore, all the methods consider that
the only change on the solute electron distribution results
from electrostatic interactions, neglecting changes due to
dispersion. Indeed, the solvent is usually assumed to be self-
polarized, the specific solute->solvent polarization being,
accordingly, tipically neglected at the molecular level. Fi-
nally, rigid models are used to represent simple solvents like
water, avoiding the need of an intramolecular term in the
force field of the solvent.

Assuming the previous considerations and the validity of
an empirical model for the solvent intermolecular interac-
tions, the Hamiltonian for the solute-solvent system can be
expanded as shown in eq. 18, where  a set of charges and van
der Waals parameters is used to represent the solvent mol-
ecules. In eq.18  s  denotes the solvent charge sites,  m  and  i
refer to the solute nuclei and electrons, N is the number of
doubly occupied molecular orbitals, and E

vw
 is the solute-

solvent van der Waals interaction energy as determined from
standard force-fields. The average representation of the sol-
ute-solvent system is obtained through MC or MD
simulations. Modified equations have been suggested by
Warshel and coworkers for aqueous solution, where the elec-
trostatic properties of water are represented by means of a
polarizable dipole [40a-d,h] instead of a set of rigid charges.

$ $ $H H H
eq

R

Z q

R
Eef MM QM s

sii

N
m s

smi

N

s

S

s

S

VW= + + + +
= ===
∑ ∑∑∑

1

2

1

2

11

(18)

For a particular nuclear configuration the energy is ob-
tained by solving the corresponding pseudo-Schrödinger
equation (eq. 19), where the effective Hamiltonian, Hef, in-
cludes the QM Hamiltonian of the solute and the solute-sol-
vent coupling term. It should be stressed that every nuclear
movement requires a self-consistent field calculation to be
performed. This requires an enormous computational effort,
which explains the use of very simple Hamiltonians.

$H EefΨ Ψ= (19)

The calculation of free energy of solvation can be done
using either FEP or TI theory [24]. As noted before, in prac-
tical simulations the annihilation of the interactions between
the solute and solvent molecule is controlled by a parameter
(λ) that modulates the contribution of the QM/MM term to
the total Hamiltonian (eq. 20). Indeed, electrostatic
decoupling [25] is usually performed in the annihilation proc-
ess.

( )$ $ $
/H H H Hef QM MM QM MMλ λ= + + (20)

Quantum discrete models are very attractive from a con-
ceptual point of view and have a wide range of potential ap-
plications. It should be emphasized that the QM treatment of
the solute avoids the errors in the intramolecular energy terms
inherent to force fields. Indeed, solute-solvent polarization
effects can be considered. Moreover, the solvent is repre-
sented at a discrete level, allowing for analysis of specific
solute-solvent interactions. Finally, the  sampling of solute
(and solvent) configurational space is enabled by MD and
MC methods. The usefulness of these methods is, neverthe-
less, limited by their computational cost, which makes it nec-
essary to use non-polarizable force fields for the solvent and
simple Hamiltonians for the solute. It also limits the exten-
sion of the configurational sampling. However, these
simplifications may affect the accuracy of the results. An
additional source of uncertainty arises from the different na-
ture of the van der Waals interactions in classical and quan-
tum discrete models [43], and ideally the transfer of van der
Waals parameters from classical force-fields should be
avoided. The newest methods, which use a specific
parametrization of van der Waals interactions for  solutes,
should  improve the quality of results [42b,43].

Quantum continuum methods

These methods combine the QM treatment of the solute with
a continuum description of the solvent. As in classical con-
tinuum methods, the free energy of solvation is determined
from the addition of three contributions: cavitation,
dispersion+repulsion, and electrostatic. The steric term, which
is considered independent of the solute electron distribution,
is computed for a given nuclear configuration by using clas-
sical equations, often parametrized from discrete simulations
or from fitting to experimental data [44,45]. A large number
of models are available, and several of them have been im-
plemented in ab initio and semiempirical QM packages. The
main differences between these methods lie in: i) the formal-
ism used to account for the electrostatic free energy of
solvation; ii) the shape of the solute/solvent interface; and
iii) the procedure adopted  for the steric contribution to the
free energy of solvation.

The electrostatic term is essentially determined accord-
ing to the same principles defined for classical continuum
models: the dielectric continuum reacts against the solute
charge distribution generating a reaction field, which in turn
interacts with the solute. Nevertheless, because of the QM
treatment of the solute, i) a rigorous representation of the
charge distribution is achieved, ii) the mutual solute<->sol-
vent polarization can be accurately incorporated, and iii) the
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solvent-induced changes in the molecular properties of the
solute can be evaluated.

The solvent reaction field is generally described in terms
of a multipole expansion or by an apparent surface charge,
even though other formalisms are available [30]. The reac-
tion field is introduced into the solute Hamiltonian (eq. 21)
in a way analogous to that used for discrete QM methods
(see above). It is worth noting that in continuum methods the
solute wavefunction and the solvent reaction field are cou-
pled via the perturbation operator, R, which usually requires
the use of self-consistent strategies. Only few of the large
number of quantum continuum methods will be outlined here.
The reader is addressed to the review by Tomasi and Persico
[30] for a thorough explanation of the different models.

( )$ $H R Esol
aq

sol0 + =Ψ Ψ (21)

Methods based on multipole expansions can be easily
implemented within the QM framework following the
formalisms developed by Rivail [7f,31a,46], Tapia [31d,47],
Katritzky and Zerner (48), among others [30,49]. The sim-
plest method corresponds to the Bell-Onsager model, where
the solute charge distribution is represented by a simple di-
pole and the solute cavity is spherical. Important improve-
ments arise from the inclusion of higher order terms in the
multipolar expansion. In this context, it is important to note
the high-level treatment developed by Rivail and coworkers.
The method, implemented in classical, semiempirical and
ab initio QM frameworks, uses a multipole expansion up to
the 7th order to represent the solute charge distribution.
Moreover, extension to multicenter expansions is also con-
sidered. Further refinements also stem from the extension of
this method to improved cavity models [46e]. In addition,
the code developed in Nancy on the basis of the formalism
of reaction field factors has been extended to the Density
Functional theory [46f], and also allows the possibility of
performing post-Hartree-Fock calculations [7f,46g].

Another method based on multipole expansions is
AMSOL [45a-c], developed by Cramer and Truhlar. AMSOL
uses semiempirical Hamiltonians for the solute, and the
molecular-shaped cavity is built up from the Born radii of
the atoms. Steric factors are considered from an empirical
linear relationship with the solvent accessible area (eq. 22),
where the tension parameters (σ

i
) are obtained from empiri-

cal fitting. The electrostatic component is based on the GBM
method. Empirically fitted parameters are also used in the
calculation of the coulombic integrals (γ

kl
) to guarantee the

quality of the results.

∆G Aster i i
i

N

= −
=
∑σ

1
(22)

AMSOL was parametrized using a large series of mol-
ecules. The final RMS error in the fitting was less than 1
kcal/mol [45a-c]. Early versions of the method may underes-
timate the electrostatic free energy of solvation due to the
use of Mulliken charges, whose shortcomings are well known
[50]. However, this problem has been largely corrected in
the newest versions of the method [50c-d]. The recent exten-
sion of AMSOL to non-aqueous solvents increases the po-
tential applications of this program [51], which is distributed
by QCPE.

Among the algorithms based on the apparent surface
charge, we limit our attention to  i) the Polarizable Continuum
Model (PCM) developed by Pisa's group [35a,b], and ii)
COSMOS (conductor-like screening model), developed by
Klamt and Schüürman [52]. The PCM method, also denoted
as MST (Miertus-Scrocco-Tomasi) in other versions devel-
oped by our group, is available in both semiempirical and ab
initio  [35a,b,45d-f,53] formalisms, while COSMOS is avail-
able only at the semiempirical level.

The newest versions of the PCM method uses the scaled
particle theory [54], modified in a suitable way to deal with
cavities adapted to the molecular shape, to compute the cavi-
tation contribution. The van der Waals component can be
determined using different classical formalisms, which range
from polynomial expansions [44a] to linear relationships with
molecular surface [45d-f]. In the latest case the tension pa-
rameters (eq. 23) are parametrized from experimental data
[45d-f]. Molecular-shaped algorithms are used to determine
the solute/solvent interface [55]. The electrostatic free en-
ergy is computed according to eq. 24, where the reaction

field operator ($VR ) is evaluated from eqs. 25-26. It is worth

noting that the apparent surface charge is determined via the
electrostatic potential (both solute and solvent contributions
are included), which avoids the use of truncated expansions.
Proper attention is also paid to the tails in the electronic dis-
tribution outside the cavity.

∆G AVW i i
i

N

= −
=
∑ζ

1
(23)

( )

∆ Φ Φ Φ Φ

Φ Φ

G H V H

V V s ds
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sol sol

sol
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nuc

= + − −

− +
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
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$
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ρ σ (24)
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Figure 5. Thermodynamic cycle for the
electron transfer between NADH and FAD.
Values in gas phase and in aqueous
solution were determined from AM1 and
AM1/MST calculations. The cavity for
charged species was reduced following the
standard procedure (see text and ref. 45g).

The PCM method has been successfully applied to a large
variety of phenomena in solution, like the description of free
energies of hydration, solvent effects in chemical reactions,
and solvent-induced changes in molecular properties [30 and
references therein]. Besides several ab initio implementa-
tions at the HF and multiconfigurational levels
[35a,b,45d,53a-c] and a recent implementation in the Den-
sity Functional framework [53d], different semiempirical
versions are available [45e-f,56]. The MST version devel-
oped by our group, which is available within the MOPAC-93
package [57], yields to free energies of hydration with an
expected RMS around 1 kcal/mol for neutral solutes. Re-
cently, the method has been extended to non-aqueous sol-
vents [6b,58]. For carbon tetrachloride and chloroform the
average RMS error in the free energy of solvation is found to
be less than 0.5 kcal/mol.

The combination of fast semiempirical calculations with
accurate solvation calculations makes the semiempirical MST
very powerful in scientific areas like biochemistry, where
the size of the molecules prevents the use of ab initio meth-
ods. An example is shown in Figure 5, where AM1/MST cal-
culations are used to study the NADH->FAD electron trans-
fer process in aqueous solution. The agreement between cal-
culations and experiment is reasonable considering the noise
in the calculation, the intrinsic shortcomings of semiempirical
calculations, and the uncertainties in the experimental meas-
urements. It is clear that semiempirical SCRF calculations
cannot provide quantitatively accurate estimates for these
processes. However, the results suggest that these calcula-

tions can be used as a powerful tool to gain qualitative in-
sight into complex biochemical processes.

COSMO introduces a novel approach to the study of a
system in solution. In this method, Klamt and Schüürman
developed a formalism based on the replacement of the di-
electric continuum medium by a conductor, which facilitates
the treatment of screening effects. The exact solution of the
screening problem for the conductor is then corrected by a
factor (eq. 24) for the application to a dielectric medium.
Eq. 25 gives the total energy of the screened system. In this
equation, Q is the generalized charge vector containing the
point charges of the nuclei and of the electron densities ele-
ments, whereas the matrix A collects the interactions between
the charges of the solute with the apparent charges spread
over the cavity, and B the interactions between the different
apparent charges. A molecular shape surface is defined for
the solute cavity. COSMO has been recently implemented in
the MOPAC-93 [57] package.

( )f ε
ε

ε
=

−
+

1
1
2

(27)

∆E = − −1
2Q B A B Q1 (28)

Recently, a new approach based on COSMO for incorpo-
rating solvent effect for solutes of arbitrary shape has been
reported. This approach is called GCOSMO [59] and has been

NADH + FAD + H3O+

NADH + FAD + H3O+ ∆Gaq

∆G1

∆Gaq = ∆Gvac
  +  ∆G2 – ∆G1  =  ∆Gvac  +  ∆∆G2–1

∆G
aq

 = –71 kcal/mol + 55 kcal/mol = –16 kcal/mol

∆G
aq

 (exp from redox potentials) = from –15 to –5 kcal/mol [a]

NAD+ + FADH2 + H2O

NAD+ + FADH2 + H2O
∆Gvac

∆G2

gas

aq.

[a] Depending on protein enviroment
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implemented in both ab initio and nonlocal Density Func-
tional levels of theory by modifying the GAUSSIAN 92/DFT
[60] program. In GCOSMO the solvent reaction field is in-
cluded directly in the SCF procedure, and hence both the
solute electron distribution and the solvent reaction field are
converged simulatneously.

All these methods work in the framework of quantum
mechanical codes ranging from semiempirical to post-
Hartree-Fock levels. Because of the lack of a microscopic
treatment of the solvent, which is represented by a continuum
medium, the computational requirements for the study of
solvation phenomena do not differ substantially from those
required for an isolated molecule. Indeed, most of these codes
are easily available, specially when thay are distributed in
standard computational programs of widespread use. For in-
stance, Gaussian-94 [61] includes different SCRF methods,
like a simple one based on the Onsager model, and different
versions of the high level MST algorithm, which differ in the
definition of the solute cavity. Undoubtedly, this facilitates
the study of a broad range of processes in solution by non-
expert users, and it can lead to a significant improvement in
our level of knowledge of chemical procecess in solution.

Conclusion

The theoretical representation of condensed phases can now
be achieved by a large variety of techniques, which are at the
disposal of computational chemists. Continuum or discrete
representations of the solvent can be combined with quan-
tum or classical treatments of the solute. Each technique has
its strengths and shortcomings, and the proper selection of
the appropriate method to be used in the study of a particular
system is probably the most important decision for the study
of a chemical process in solution.
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